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CHAPTER 2: 

ASSESSMENT OF FATIGUE 

THROUGH MYOELECTRIC PARAMETERS 

2.1 THE MYOELECTRIC SIGNAL 

2.1-1 Signal Generation 

Voluntary muscular contraction is initiated by stimulation from peripheral nerves 

controlled by the central nervous system.  In particular, electrical impulses are 

transferred from a motor neuron to associated muscle fibres through the 

electrochemical transmitter Acetylcholine (Ach).   Each motor neuron, together 

with all of the muscle fibres which it innervates, is a motor unit.  As an electrical 

impulse travels down the muscle fibres of a motor unit, a muscle contraction is 

elicited.    

When an electrical impulse reaches a synapse between a motor nerve axon and 

a muscle fibre, Ach is released from terminal branches of the axon.  Upon 

contact with the muscle fibre, Ach induces conformational changes within the 

membrane of the muscle fibre which alter the permeability of the membrane to 

intracellular and extracellular ions such as potassium (K+), sodium (Na+), and 

chlorine (Cl-).  Before excitation, these ions are balanced by electrical and 

concentration gradients such that an electrical potential difference of about -90 

mV exists across the membrane [4].  Upon excitation, this balance is upset as a 

net flow inward of Na+ ions prevails and the magnitude of the potential difference 
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drops.  If this magnitude drops to a threshold value ( thV , between -70 mV and -50 

mV [4]), further conformational changes take place which act as a feed forward 

mechanism for the influx of Na+ ions.  This causes a rapid local depolarization of 

the muscle fibre membrane.  At a certain potential difference, new conformational 

changes take place within the membrane which augment an efflux of K+ ions out 

of the muscle fibre.  This gradually repolarizes the local membrane.  The time 

excursion of this electrical activity is called a membrane action potential (AP) and 

is depicted in Figure 2-1: 

 

 

 

 

 

 

 

Figure 2-1:  Typical Muscle Fibre Action Potential 

Although the membrane AP is initiated at the innervation point (IP) of a fibre, it 

propagates down the length of each fibre (in both directions) because the activity 

in one part of a fibre stimulates similar activity in adjacent parts.  Since APs are 

dependent upon a threshold voltage ( thV ), the initiation of one is an ‘all-or-none’ 

phenomenon; subsequently, its propagation is unattenuated.  While propagation 

speeds vary based on fibre diameter and the metabolite content of surrounding 

extracellular fluid, the range is between 2 m/s and 6 m/s [4]. 
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Each membrane AP disperses an electromagnetic field through the conducting 

tissue surrounding the fibre and this field can be detected by surface electrodes 

placed within the vicinity.  However, because the tissue acts as a spatial low 

pass filter [2, 5], the resulting surface single fibre action potential (SFAP) is 

dependent on the depth of the muscle fibre.  The electrode configuration used to 

measure the signal, the filtering characteristics of the electrodes, and in the case 

of configurations with multiple electrodes, the position of the electrodes relative to 

each other also influence the surface SFAP, along with the propagation velocity 

of the membrane AP, also known as conduction velocity (CV).  

Under normal conditions all muscle fibres associated with a particular motor 

neuron are stimulated almost simultaneously and surface electrodes are not 

capable of distinguishing between SFAPs.  Instead, they detect the superposition 

of the surface SFAPs, known as a motor unit action potential (MUAP), as 

described in Figure 2-2.  

 

 

 

 

 

 

 

 

Figure 2-2:  Schematic Representation of the Generation of a MUAP 

IP

Innervation 

Zone

Recording site

SFAP1

SFAP2

SFAP3

SFAPN

MUAP

IP

Innervation 

Zone

Recording site

SFAP1

SFAP2

SFAP3

SFAPN

MUAP



 

 9 

Also indicated in this figure is the innervation zone (IZ) of the motor unit.  This is 

the region within which all fiber IPs reside.  The location and size of IZs vary 

widely from muscle to muscle and some muscles have been shown to have more 

than one; two IZs, 4-6 mm wide, for instance, have been observed in the brachial 

biceps [3, 5, 6]. 

While a single MUAP elicits a twitch from a muscle, to sustain a full contraction a 

series of MUAPs is required.  A time series of nervous impulses generates a 

series of MUAPs capable of sustaining a contraction.  This series can be 

modeled as a MUAP train (MUAPt) characterized by the shape of the MUAP 

together with the properties of the time series. 

Because the MUAP is a summation of SFAPs, its shape is determined by the 

parameters which define each SFAP.  However, the MUAP is defined not only by 

the shape of its contributing SFAPs but also by their spatial proximities.  Thus, 

the MUAP is also dependent on the relative positions of the fibres and their IPs,  

with respect to each other and the recording electrodes.  

The time series, which defines the firing statistics of a motor unit, can be 

modeled as a random point process which has been characterized by an 

interpulse interval (IPI) with a Poisson [7] or Wiebel [8] distribution based on 

empirical evidence, although other distributions have also been observed.  For 

instance, Buchthal et al. [9], Clamman [10], and Pan et al. [11] all observed a 

Gaussian-like IPI distribution for data obtained from the brachial biceps. 
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Unless the contraction is very weak, more than one motor unit is active at the 

same time.  In this case, the summation of all of the MUAPts within the 

detectable range of electrodes is measured.  If the number of MUAPts increases 

significantly, the resulting random signal can be characterized by a Gaussian 

distribution as a result of the central limit theorem [1, 12, 13].  The signal 

measured by the electrodes is known as a myoelectric signal (MES) and its 

associated recording is an electromyogram (EMG).   While the MES varies 

widely from muscle to muscle and is further dependent on muscle force and joint 

angle, when measured with surface electrodes in bipolar configuration, its 

amplitude generally ranges from 1-5 Vp-p to 1-5 mVp-p and its bandwidth 

generally spans DC to 500 Hz [14]. 

2.1-2 Signal Stationarity 

Any random process with a time invariant statistical characterization is said to be 

strictly stationary [15].  Accordingly, the autocovariance function of a stationary 

process is time invariant and the mean and variance are indeed constant.  While 

these conditions are not sufficient to define stationarity in a strict sense, they are 

generally accepted to define a random process which is wide sense stationary, 

and any process which is not wide sense stationary  is clearly not strictly 

stationary [16].   

The concept of stationarity can also be applied to a sample function of a random 

process.  Stationary sample functions, often referred to as self-stationary, are 
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characterized by time-average statistics which do not change significantly from 

segment to segment [16].  Also, sample functions which may not be entirely 

stationary but can be sectioned into stationary segments of sufficient length are 

described as pseudo-stationary or quasi-stationary [17].  The MES is a sample 

function of a random process which is characterized by a number of statistical 

parameters.  If any of these parameters change with time, the resulting MES will 

be non-stationary. 

A static muscle contraction is a contraction during which muscle force and joint 

angle remain relatively constant; thus the statistical parameters of an MES 

produced from static contractions are centrally motivated to remain invariable 

and non-fatiguing static contractions yield relatively stationary signals.  

Furthermore, since fatigue progresses relatively slowly through the duration of a 

sustained contraction, fatiguing static contractions are generally pseudo-

stationary. 

Conversely, a dynamic contraction is a contraction during which muscle force 

and/or joint angle (hereon in collectively termed ‘dynamic factors’) change as the 

contraction progresses.  The neuromuscular system uses a combination of 

temporal and spatial summation to accommodate changes in muscle force.  

Temporal summation involves increasing the firing rate of already active motor 

units whereas spatial summation involves the recruitment of more motor units 

into the active state [4]. 
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While both of these alterations may contribute to the non-stationary nature of  

dynamic MES, their influence is not always apparent in descriptive MES 

parameters, especially power spectral parameters.  Ample evidence suggests 

that firing statistics have little impact on global frequency parameters [11,18,19] 

because their impact is limited to frequency components under 20 Hz [20].  Also, 

recruitment has been shown to be a factor only when considerably different 

motor units are recruited [21, 22]. 

Changes in joint angle rearrange the geometry of muscle fibres with respect to 

each other and the recording electrodes.  Because the location of muscle fibres 

with respect to electrodes affects SFAP shape through tissue filtering, and 

because the locations of muscle fibres with respect to each other affect MUAP 

shape through summation, geometric changes can have profound influence on 

the non-stationary nature of dynamic MES and subsequent descriptive 

parameters. 

The degree of stationarity in the MES is a critical consideration when using 

descriptive MES parameters to infer the state of a muscle.  In this regard, the 

state of a muscle may refer to a muscle’s activity level, force level or associated 

joint angle, as well as a muscle’s state of fatigue.  If the MES is not sufficiently 

pseudo-stationary, assessment of the muscle is problematic for two reasons.  

First estimation error may become unmanageable in descriptive parameters for 

which averaging is necessary, because averaging techniques may result in 

uncontrolled biases as a result of the non-stationarities.  Second, it may become 
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difficult to differentiate between the factors which may be contributing to the 

variation in parameters.  Thus, when characterizing MES with descriptive 

parameters, signal stationarity must be taken into account.  

2.1-3 Signal Characterization 

Signal generation parameters such as firing statistics, the number of fibres in a 

motor unit and the number of active motor units contributing to a contraction all 

yield information regarding the state of a muscle.  However, such parameters are 

not easily extracted from surface MES measurements, and in some cases are 

impossible to ascertain.  Nevertheless, there are descriptive parameters in the 

MES which do provide information regarding the state of a muscle and have 

been used to classify MES from different contractions, to estimate force levels of 

contractions and/or to assess fatigue. 

2.1-3a Typical Time Domain Descriptive Parameters 

In 1993 Hudgins [23] proposed an MES feature set which enabled a neural 

network to differentiate between MES derived from different classes of 

contractions.  This group of parameters has since then been shown to be a 

relatively rich characterization of the MES [24], though other more complex 

feature sets are capable of outperforming this simple set in classification tasks.  

Nevertheless, the simplicity of Hudgins’ feature set makes it an appealing set of 

descriptive MES parameters.  The set is made up of the parameters listed in 
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Table 2-1, described in discrete terms where kx  represents the thk  sample of 

MES segment p  made up of K  samples [24]: 

Name Description Mathematical 
Representation 

 

Mean Absolute Value 
(MAV) 

The mean of the absolute 
value of a segment of 
MES. 

  



K

k

k

p x
K

x
1

1
 

 

( 2-1)  

Mean Absolute Value 
Slope (MAVS) 

The difference between 
MAV estimates from 
adjacent MES segments. 

 
     ppp xxx  1  

 

( 2-2) 

Zero Crossings  
(ZC) 

The number of times in the 
segment that the MES 
crosses zero.  To reduce 
overestimation due to 
noise, a threshold criteria 
‘  ’ is implemented. 

ZCn is incremented if: 

 

[ 0  and  0 1  kk xx  

or 

 0  and  0 1  kk xx ] 

while 

 1kk xx  

 
 
 
 

( 2-3) 

  

Slope Sign Changes 
(SSC) 

The number of times in the 
segment that the slope of 
the MES changes sign. To 
reduce overestimation due 
to noise, a threshold 
criteria ‘  ’ is implemented. 

SSCn is incremented if: 

 

[ 11   and    kkkk xxxx  

or 
 11   kkkk xxxx   and  ] 

while 

 1kk xx  

 
 
 
 

( 2-4) 

  

Waveform Length 
(WL) 

The cumulative length of 
the waveform over the 
MES segment. 





K

k

kk xxl
1

1  
 

( 2-5) 

  

Table 2-1:  Time Domain Parameters Describing MES 

Along with MAV, a number of other amplitude parameters have been advanced.  

Among them are the root mean square (RMS) and integrated amplitude (IEMG) 

defined in Equations , 2-6 and 2-7, respectively [5].  

 
  




K

k

k

p

RMS x
K

x
1

21
 ( 2-6) 
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  




K

k

k

p

IEMG xx
1


 ( 2-7) 

2.1-3b Typical Frequency Domain Descriptive Parameters 

While parameters such as ZC and SSC can be used to infer the frequency 

content of MES, direct estimation of power spectral parameters is also common 

practice.  Typically the power spectrum is estimated by taking the Fourier 

transform of the time-averaged autocorrelation function [15]: 

 

          







 



T

T

xx dttxtx
T

FRFf 
2

1  ( 2-8) 

where,  f  represents the power spectrum, and  xxR  represents the 

autocorrelation function of  tx , an MES segment of duration ‘T ’.  This is 

equivalent to obtaining the periodogram of the MES, which is defined according 

to [15]: 

     2

2

1
fX

T
f   ( 2-9) 

where   2
fX represents the Fourier Transform of the signal  tx .  Recognizing 

that the power spectrum represents the frequency distribution of power in a given 

signal, typical parameters used to characterize the power spectrum once it has 
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been estimated are the bandwidth, mean frequency and median frequency as 

defined in discrete terms in Table 2-2: 

Name Description Mathematical 
Representation 

 

Bandwidth 
 (BW) 

The frequency, ‘ BWf ’ below 

which a specified high 
percentage ‘  ’ of the    

energy of the signal exists   

BWNBW ff   where    

 



BWN

i

if

1

  

 
( 2-10) 

 

Normalized Mean 
Frequency (MF) 

The normalized mean 

frequency ‘ mf ’ of the 

frequency distribution. 

 

 












max

max

1

1

N

i

i

N

i

ii

m

f

ff

f  

 
 
 

( 2-11) 
 

Median Frequency 
 (FMED) 

The median frequency 

‘ medf ’ of the frequency 

distribution (the frequency 
below which 50% of the 
energy of the signal exists).  

BWNmed ff   where    

   



max

1

N

Ni

i

N

i

i

BW

BW

ff  

 

( 2-12) 

Table 2-2:  Frequency Domain Parameters Describing MES 

Any power spectral estimate derived from a record of data is plagued with both 

bias and variance.  The record can be represented by the product of the signal in 

question and a square window with duration ‘T ’ equal to the record duration.  

The bias is therefore caused by spectral leakage resulting from the convolution 

with the window in the frequency domain.  This can be reduced by shaping the 

window and increasing the window duration [25].  An increased window duration 

also increases the frequency resolution of the estimated spectrum (
T

f 1 ), an 

equally appealing outcome. 

The variance of the power spectral estimate is more problematic.  As verified by 

Oppenhiem and Schafer [Error! Reference source not found.], the variance of 
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the periodogram does not improve with increasing record duration.  Thus, to 

obtain a smooth power spectral estimate for a given signal record, some form of 

averaging must be implemented.  The Bartlett and Welsh Methods are both 

common smoothing methods based on averaging [25, Error! Reference source 

not found.].  Using these techniques, a data record is divided into epochs from 

which periodogram estimates are obtained and the power spectral estimate for 

the record is obtained by averaging the periodograms across windowed epochs.  

Bartlett’s method employs non-overlapping rectangular windows.  Welsh’s 

method employs overlapping shaped windows, commonly the Hanning window.   

Increasing ‘ E ’, the number of epochs  averaged per record, decreases the 

variability ‘ 2

R ’ of a record’s power spectral estimation according to:  

 
22 1
eR

E
   ( 2-13) 

where 2

e  represents the variance across epoch (assuming that the epochs are 

uncorrelated).  However, a trade-off must be established between reducing the 

bias of each periodogram and reducing the variability.  For a given record 

duration ‘T ’, to increase E , the duration of each epoch must be reduced; thus to 

reduce variability, bias and resolution must be compromised.  Since Welsh’s 

method utilizes shaped and overlapping windows, an acceptable compromise 

can usually be obtained using this averaging technique [25]. 
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